1 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
uymdong5262623 edited this page 1 month ago


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion criteria to develop, experiment, and properly scale your generative AI ideas on AWS.

In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled versions of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) developed by DeepSeek AI that uses reinforcement learning to enhance thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A crucial distinguishing function is its support knowing (RL) action, which was utilized to refine the model's actions beyond the basic pre-training and tweak procedure. By integrating RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, eventually improving both relevance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, implying it's equipped to break down complex questions and reason through them in a detailed way. This directed thinking process permits the design to produce more accurate, transparent, bytes-the-dust.com and detailed answers. This model combines RL-based fine-tuning with CoT capabilities, aiming to produce structured responses while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has captured the industry's attention as a flexible text-generation design that can be integrated into different workflows such as representatives, rational thinking and information interpretation jobs.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion specifications, allowing efficient inference by routing queries to the most appropriate expert "clusters." This method enables the design to concentrate on various issue domains while maintaining total performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 design to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more efficient designs to mimic the behavior and thinking patterns of the larger DeepSeek-R1 design, utilizing it as an instructor design.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest releasing this model with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid harmful material, and examine models against essential security criteria. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create numerous guardrails tailored to various usage cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limitation boost, develop a limitation increase demand and reach out to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For directions, see Establish approvals to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to introduce safeguards, avoid damaging content, and examine designs against essential safety requirements. You can execute precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to evaluate user inputs and design responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general circulation includes the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After receiving the model's output, another guardrail check is used. If the output passes this final check, it's returned as the final outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, pick Model catalog under Foundation designs in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and select the DeepSeek-R1 design.

The model detail page provides important details about the design's capabilities, prices structure, and application guidelines. You can find detailed use instructions, bytes-the-dust.com consisting of sample API calls and code snippets for combination. The model supports various text generation tasks, consisting of material production, code generation, and concern answering, utilizing its reinforcement finding out optimization and CoT reasoning capabilities. The page likewise consists of deployment alternatives and licensing details to assist you get going with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, choose Deploy.

You will be prompted to configure the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Number of circumstances, get in a variety of circumstances (in between 1-100). 6. For Instance type, choose your circumstances type. For optimal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can configure innovative security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service role authorizations, and file encryption settings. For the majority of utilize cases, the default settings will work well. However, for production deployments, you may wish to review these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the design.

When the implementation is complete, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive interface where you can experiment with different prompts and adjust model criteria like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum results. For instance, material for reasoning.

This is an exceptional way to check out the model's reasoning and text generation abilities before integrating it into your applications. The play area offers instant feedback, helping you comprehend how the design reacts to numerous inputs and letting you tweak your prompts for ideal outcomes.

You can quickly test the design in the playground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference using guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to perform inference utilizing a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually developed the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up inference parameters, and sends a request to create text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides 2 practical approaches: using the intuitive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both techniques to assist you select the method that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model web browser displays available designs, with details like the provider name and model capabilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card. Each design card reveals key details, consisting of:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if applicable), indicating that this design can be registered with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to see the model details page.

    The model details page consists of the following details:

    - The model name and supplier details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you deploy the model, it's advised to examine the model details and license terms to confirm compatibility with your use case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, use the automatically created name or produce a custom one.
  1. For example type ¸ pick an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, go into the number of instances (default: 1). Selecting suitable instance types and counts is crucial for cost and efficiency optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time inference is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this design, we strongly suggest adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to deploy the model.

    The deployment process can take several minutes to complete.

    When implementation is complete, your endpoint status will change to InService. At this point, the design is all set to accept reasoning demands through the endpoint. You can keep an eye on the deployment development on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the implementation is complete, you can conjure up the design using a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the design is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To prevent unwanted charges, complete the steps in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you released the model utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace deployments.
  5. In the Managed releases section, locate the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're deleting the right implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business develop innovative solutions utilizing AWS services and accelerated calculate. Currently, he is focused on establishing strategies for fine-tuning and optimizing the inference efficiency of large language designs. In his spare time, Vivek takes pleasure in hiking, watching films, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing solutions that assist clients accelerate their AI journey and unlock service value.