1 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Devon Cline edited this page 2 months ago


Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion specifications to construct, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock and SageMaker JumpStart. You can follow comparable steps to release the distilled variations of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that utilizes reinforcement finding out to enhance thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. An essential distinguishing function is its reinforcement knowing (RL) step, which was used to refine the model's responses beyond the standard pre-training and tweak process. By integrating RL, DeepSeek-R1 can adjust better to user feedback and goals, ultimately boosting both relevance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) method, meaning it's geared up to break down intricate inquiries and factor through them in a detailed manner. This guided thinking process enables the model to produce more accurate, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT capabilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has recorded the industry's attention as a versatile text-generation design that can be incorporated into various workflows such as agents, rational thinking and data interpretation jobs.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion criteria, enabling effective reasoning by routing questions to the most relevant specialist "clusters." This technique permits the model to concentrate on different problem domains while maintaining general performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 model to more effective architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller, more efficient designs to simulate the behavior and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as an instructor model.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this design with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, setiathome.berkeley.edu prevent damaging content, and assess designs against crucial security requirements. At the time of composing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop several guardrails tailored to various use cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limit increase, create a limit boost demand surgiteams.com and reach out to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) consents to use Amazon Bedrock Guardrails. For instructions, see Establish consents to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, avoid hazardous material, and assess models against essential safety requirements. You can execute precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to assess user inputs and design responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic flow includes the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the final outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, pick Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can use the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and pick the DeepSeek-R1 model.

The design detail page offers essential details about the design's abilities, prices structure, and application guidelines. You can discover detailed usage directions, including sample API calls and code snippets for combination. The design supports numerous text generation tasks, including content production, code generation, and gratisafhalen.be question answering, utilizing its support discovering optimization and CoT reasoning abilities. The page also includes release alternatives and licensing details to assist you get going with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, select Deploy.

You will be prompted to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Number of circumstances, go into a number of circumstances (in between 1-100). 6. For example type, choose your instance type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can configure innovative security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service function approvals, and encryption settings. For many utilize cases, the default settings will work well. However, for production implementations, you may desire to examine these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to start utilizing the design.

When the deployment is complete, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in play area to access an interactive interface where you can experiment with various triggers and adjust model specifications like temperature and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal results. For instance, content for reasoning.

This is an excellent way to check out the model's reasoning and text generation capabilities before incorporating it into your applications. The playground provides instant feedback, assisting you comprehend how the design responds to various inputs and letting you fine-tune your prompts for optimal outcomes.

You can quickly check the model in the playground through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference using a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures inference specifications, and sends a request to generate text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses 2 hassle-free techniques: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both techniques to assist you select the method that finest fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The model web browser shows available designs, with details like the company name and model abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each design card reveals key details, including:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if appropriate), showing that this model can be signed up with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to see the model details page.

    The design details page consists of the following details:

    - The model name and provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you release the design, it's advised to review the design details and license terms to validate compatibility with your usage case.

    6. Choose Deploy to continue with implementation.

    7. For Endpoint name, use the automatically generated name or develop a customized one.
  1. For Instance type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the number of instances (default: 1). Selecting appropriate circumstances types and counts is vital for expense and performance optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this design, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to deploy the design.

    The implementation process can take numerous minutes to complete.

    When release is complete, your endpoint status will change to InService. At this point, the model is all set to accept inference demands through the endpoint. You can keep an eye on the deployment progress on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the deployment is total, you can invoke the model using a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get begun with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the necessary AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the design is provided in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Tidy up

    To avoid undesirable charges, finish the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the model using Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace releases.
  5. In the Managed implementations area, find the endpoint you desire to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're deleting the proper release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct ingenious options utilizing AWS services and accelerated compute. Currently, he is concentrated on developing strategies for fine-tuning and enhancing the inference efficiency of large language models. In his spare time, Vivek takes pleasure in hiking, enjoying films, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about constructing services that assist consumers accelerate their AI journey and unlock business value.